Risk Factors for Antibiotic Resistance
Keith P. Klugman, MD, PhD
Acute Respiratory Infections: The Leading Infectious Cause of Death

*HIV-positive people who have died with tuberculosis have been included among AIDS deaths.

Factors Influencing the Selection of Antibiotic-Resistant Pneumococci

- Age
- Site of specimen
- Hospitalization
 - Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- HIV
- Mechanisms of resistance
- Conjugate vaccine
Risk Factors for Penicillin-Resistant Pneumococcal Infections

- French retrospective study on 10,350 isolates

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <15 years</td>
<td>2.01</td>
</tr>
<tr>
<td>Isolation from URT</td>
<td>2.36</td>
</tr>
<tr>
<td>Isolation from sinus and middle ear</td>
<td>1.63</td>
</tr>
<tr>
<td>HIV infection</td>
<td>2.01</td>
</tr>
<tr>
<td>β-lactam Rx in prev. 6 months</td>
<td>1.99</td>
</tr>
<tr>
<td>Nosocomial acquisition</td>
<td>2.12</td>
</tr>
</tbody>
</table>

URT = upper respiratory tract.

Fluoroquinolone Use and PRSP, Canada, 1988-1998

PRSP = penicillin-resistant *Streptococcus pneumoniae*.

Risk Factors for Acquisition of Levofloxacin-Resistant Pneumococci in Hong Kong

- Nosocomial origin – OR 16.2 (95% CI 2.1-122.2)
 \(P = 0.007 \)
- Exposure to an FQ in past 12 months – OR 10.7 (95% CI 1.6-71.2)
 \(P = 0.01 \)
- Presence of COPD – OR 10.3 (95% CI 1.6-66.2)
 \(P = 0.01 \)
- Residence in a nursing home – OR 7.4 (95% CI 1.5-35.1)
 \(P = 0.01 \)

OR = odds ratio; FQ = fluoroquinolone; COPD = chronic obstructive pulmonary disease.

Residence in a Long-Term Care Facility as a Risk for Fluoroquinolone Resistance, USA

- Patients admitted to hospital with pneumococcal bacteremia from long-term care facilities had higher rates of FQ resistance than did age-matched controls admitted from the community.
- Cipro, levo ≥ 4, gati ≥ 2

<table>
<thead>
<tr>
<th>FQ</th>
<th>LTCF % R</th>
<th>Community % R</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipro</td>
<td>8.7</td>
<td>2.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Levo</td>
<td>4.2</td>
<td>0.4</td>
<td><0.01</td>
</tr>
<tr>
<td>Gati</td>
<td>3.5</td>
<td>0.3</td>
<td><0.01</td>
</tr>
</tbody>
</table>

FQ Resistance in Kids – A Warning From Africa?

- Ongoing surveillance of blood isolates of the *Pneumococcus* in adults and children in South Africa susceptibility testing was performed through July 2005 on 14,204 isolates. Of these only 14 (0.1%) were FQ-resistant, increasing from 0.05% in 2001 to 0.3% in 2005

- If this were the USA, none would be expected to be from children – 12/14 were children

- All HIV-infected, 9 known to be receiving treatment for tuberculosis and all 12 resistant also to rifampin (12/12 (100%) vs 254/5911 (4%), \(P <0.001\))

- Risk is exposure to hospitals where children are given FQ for multidrug-resistant tuberculosis

Factors Influencing the Selection of Antibiotic-Resistant *Pneumococci*

- Age
- Site of specimen
- Hospitalization
- **Antibiotic use**
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- HIV
- Mechanisms of resistance
- Conjugate vaccine
Association of Antibiotic Use With Resistance in the *Pneumococcus*

The log odds of resistance to penicillin among invasive isolates of *Streptococcus pneumoniae* (PNSP; \(\ln(R/[1-R])\)) is regressed against outpatient sales of \(\beta\)-lactam antibiotics in 11 European countries.

DDD = defined daily doses.
Azithromycin Use vs Macrolide Resistance in Portugal

Differences in Antibiotic Use and Resistance, Germany and France

<table>
<thead>
<tr>
<th>Variable</th>
<th>France</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin resistance</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>Macrolide resistance</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>No. office visits for common cold/1000 population</td>
<td>253</td>
<td>19</td>
</tr>
<tr>
<td>No. prescriptions/100 office visits for common cold</td>
<td>48.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Prescriptions for common cold/1000 population*</td>
<td>123</td>
<td>1</td>
</tr>
</tbody>
</table>

*Calculated from figures above.

Percentages of Penicillin-Sensitive and Penicillin-Resistant Pneumococci

Model Predicting the Emergence of Dual Resistance in USA

Year

Proportion Resistant

- Penicillin
- Macrolide resistance
- Multiresistance
Selection of Resistant Pneumococci by High-Dose, Short-Duration Amoxicillin

<table>
<thead>
<tr>
<th>Relative Risk of PRSP in Carriers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High dose vs low dose</td>
<td>0.78 (0.65-0.95)</td>
</tr>
<tr>
<td>Day 28 vs day 0 high dose</td>
<td>1.22 (1.02-1.48)</td>
</tr>
<tr>
<td>Day 28 vs day 0 low dose</td>
<td>1.60 (1.36-1.89)</td>
</tr>
</tbody>
</table>

Factors Influencing the Selection of Antibiotic-Resistant *Pneumococci*

- Age
- Site of specimen
- Hospitalization
- Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- HIV
- Mechanisms of resistance
- Conjugate vaccine
Impact of Fansidar Therapy for Malaria on Cotrimoxazole Resistance in the *Pneumococcus*

Factors Influencing the Selection of Antibiotic-Resistant Pneumococci

- Age
- Site of specimen
- Hospitalization
- Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- **Day care**
- **Clonal spread**
- HIV
- Mechanisms of resistance
- Conjugate vaccine
Isolation of *S. pneumoniae* 23F, intermediately susceptible to penicillin and resistant to trimethoprim-sulfamethoxazole

Multivariate Analysis of Risk Factors for Penicillin-Resistant Invasive *S. pneumoniae* Infections (52 Penicillin-Resistant Cases, 280 Control Subjects)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Covariate</th>
<th>Adjusted OR*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-59 months</td>
<td>Recent day-care attendance</td>
<td>3.79</td>
<td>1.85-7.77</td>
</tr>
<tr>
<td></td>
<td>At least one recent course of antibiotics</td>
<td>3.08</td>
<td>1.28-7.40</td>
</tr>
<tr>
<td></td>
<td>At least one recent ear infection</td>
<td>2.38</td>
<td>1.05-5.42</td>
</tr>
</tbody>
</table>

*Adjusted for age.

Family Transmission of Resistant Strains

In a multivariate model of risk factors for the acquisition of resistant (pen and/or erythro and/or TMP/SMX) pneumococcal carriage in children in Utah, US, the significant risk factors were

—Cephalosporin use in previous 4 months
 OR 2.7 95% CI 1.1-6.6 \(P = 0.035 \)

—Sibling carrying a resistant strain
 OR 7.5 95% CI 0.7-20.7 \(P <0.001 \)

Clonal Spread of *S. pneumoniae* 23F
<table>
<thead>
<tr>
<th>Country</th>
<th>Serotype Isolated</th>
<th>International Clone Number</th>
<th>Subsequent Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg, Spain</td>
<td>23F</td>
<td>-1</td>
<td>-19F</td>
</tr>
</tbody>
</table>

IUMS = International Union of Microbiological Societies.
Linkage Distance

0.0 0.2 0.4 0.6 0.8 1.0

S. Africa19A–7
Poland23F–16
Hungary19A–6
Taiwan23F–15
S. Africa6B–8
S. Africa19A–13
CSR19A–11
England14–9
CSR14–10
Spain14–5
Taiwan19F–14
Tennessee23F–4
Finland6B–12
Spain6B–2
Spain9V–3
Spain23F–1

Clones of Penicillin-Resistant *Pneumococci* in the US

<table>
<thead>
<tr>
<th>Clone</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain^{23F-1} – 14,19</td>
<td>127/328</td>
<td>38.7%</td>
</tr>
<tr>
<td>Spain^{9V-3} – 14,19</td>
<td>40/328</td>
<td>12.2%</td>
</tr>
<tr>
<td>Eight other clones</td>
<td>112/328</td>
<td>34.1%</td>
</tr>
<tr>
<td>The above ten clones</td>
<td>279/328</td>
<td>85.0%</td>
</tr>
</tbody>
</table>

Clonality of Highly Penicillin-Resistant *Pneumococci* in the US

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain$^{23F-1}$</td>
<td>123/672</td>
<td>18.3%</td>
<td></td>
</tr>
<tr>
<td>Spain$^{9V-3}$</td>
<td>96/672</td>
<td>14.3%</td>
<td></td>
</tr>
<tr>
<td>PFGE type 3</td>
<td>65/672</td>
<td>9.7%</td>
<td></td>
</tr>
<tr>
<td>Spain$^{6B-2}$</td>
<td>44/672</td>
<td>6.5%</td>
<td></td>
</tr>
<tr>
<td>PFGE type 5</td>
<td>42/672</td>
<td>6.3%</td>
<td></td>
</tr>
<tr>
<td>Tennessee$^{23F-4}$</td>
<td>33/672</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>PFGE types 7-10</td>
<td>95/672</td>
<td>14.1%</td>
<td></td>
</tr>
<tr>
<td>Taiwan$^{19F-14}$</td>
<td>11/672</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>PFGE types 12,13</td>
<td>15/672</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>12 clones</td>
<td>524/672</td>
<td>78.0%</td>
<td></td>
</tr>
</tbody>
</table>

PFGE = pulsed-field gel electrophoresis.

Clones of Penicillin-Resistant *Pneumococci* in the US

<table>
<thead>
<tr>
<th>Clone Description</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain(^{23F-1} - 19)</td>
<td>23/144</td>
<td>16%</td>
</tr>
<tr>
<td>Spain(^{6B-2})</td>
<td>4/144</td>
<td>3%</td>
</tr>
<tr>
<td>Spain(^{9V-3} - 9A,14)</td>
<td>40/144</td>
<td>28%</td>
</tr>
<tr>
<td>Tennessee(^{23F-4})</td>
<td>19/144</td>
<td>13%</td>
</tr>
<tr>
<td>England(^{14-9})</td>
<td>31/144</td>
<td>22%</td>
</tr>
<tr>
<td>Three other clones</td>
<td>17/144</td>
<td>12%</td>
</tr>
<tr>
<td>The above eight clones</td>
<td>134/144</td>
<td>93%</td>
</tr>
</tbody>
</table>

Increase in FQ Resistance in the *Pneumococcus* in Hong Kong

- Two studies of sequential clinical isolates from 6 hospitals in Hong Kong – 1998 and 2000
- Levo MIC $\geq 4 \ \mu g/mL$ – \Uparrow from 5.5% to 13.3%
- In penicillin-resistant strains – \Uparrow 9.2% to 27.3%
- Risk factors were
 - Patients ≥ 65 y – 17.1% vs 9.1% (18-64 y) ($P < 0.001$)
 - Adults with COPD – 24.6% vs 9.3% ($P = 0.01$)
- All FQ-resistant strains are a clone of Spain23F-1 resistant to penicillin (MIC 2-4 $\mu g/mL$) and cefotaxime (MIC 1-4 $\mu g/mL$)

Factors Influencing the Selection of Antibiotic-Resistant *Pneumococci*

- Age
- Site of specimen
- Hospitalization
- Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- **HIV**
- Mechanisms of resistance
- Conjugate vaccine
Impact of HIV on Penicillin Resistance in the *Pneumococcus*

<table>
<thead>
<tr>
<th>Age</th>
<th>HIV+</th>
<th>HIV-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>19/100 (19%)</td>
<td>11/259 (4%)</td>
</tr>
<tr>
<td>Children</td>
<td>24/45 (53%)</td>
<td>16/53 (30%)</td>
</tr>
</tbody>
</table>

Emerging Problem

- Cotrimoxazole-resistant (and multiply-resistant) pneumococcal infections are more common in HIV-infected children and adults on prophylaxis with the drug

Gender as a Risk Factor for Antibiotic Resistance: Independent Risk Factors in a Multivariate Model for Pneumococcal Bacteremia in Women

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric serotype</td>
<td>1.59</td>
<td>1.18-2.15</td>
</tr>
<tr>
<td>Penicillin resistance</td>
<td>1.65</td>
<td>1.06-2.59</td>
</tr>
<tr>
<td>HIV seropositive</td>
<td>1.85</td>
<td>1.26-2.71</td>
</tr>
<tr>
<td>Ages 18-39 vs ≥40 years</td>
<td>1.72</td>
<td>1.25-2.36</td>
</tr>
</tbody>
</table>

Factors Influencing the Selection of Antibiotic-Resistant *Pneumococci*

- Age
- Site of specimen
- Hospitalization
- Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- HIV
- **Mechanisms of resistance**
- Conjugate vaccine
Amino Acid Substitutions in Sensitive and Resistant DHFRs

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>20</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>74</th>
<th>77</th>
<th>78</th>
<th>81</th>
<th>91</th>
<th>92</th>
<th>94</th>
<th>100</th>
<th>111</th>
<th>135</th>
<th>147</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCLS</td>
<td>E</td>
<td>E</td>
<td>K</td>
<td>I</td>
<td>P</td>
<td>I</td>
<td>V</td>
<td>A</td>
<td>Q</td>
<td>Q</td>
<td>D</td>
<td>A</td>
<td>E</td>
<td>I</td>
<td>P</td>
<td>L</td>
<td>F</td>
</tr>
<tr>
<td>69419</td>
<td>E</td>
<td>E</td>
<td>K</td>
<td>I</td>
<td>P</td>
<td>I</td>
<td>V</td>
<td>A</td>
<td>Q</td>
<td>Q</td>
<td>D</td>
<td>A</td>
<td>E</td>
<td>I</td>
<td>P</td>
<td>L</td>
<td>F</td>
</tr>
<tr>
<td>SENSITIVE</td>
<td>D</td>
</tr>
<tr>
<td>RESISTANT</td>
<td>Q</td>
<td>Q</td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>L</td>
<td>S</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

Single-base mutation conferring resistance suggests rapid selection

DHFR = dihydrofolate reductase.

Factors Influencing the Selection of Antibiotic-Resistant *Pneumococci*

- Age
- Site of specimen
- Hospitalization
- Antibiotic use
 - National, individual
 - Dose and duration of therapy
 - Therapy with cross-reacting molecule
- Day care
- Clonal spread
- HIV
- Mechanisms of resistance
- **Conjugate vaccine**
Impact of 9-Valent Conjugate Vaccine on Carriage of Antibiotic-Resistant *Pneumococci*

<table>
<thead>
<tr>
<th>Antibiotic Resistance</th>
<th>Vaccines (%) (n = 130)</th>
<th>Controls (%) (n = 145)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>27 (21)</td>
<td>60 (41)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2 (2)</td>
<td>5 (3)</td>
<td>—</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>14 (11)</td>
<td>13 (9)</td>
<td>—</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>8 (6)</td>
<td>6 (4)</td>
<td>—</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>7 (5)</td>
<td>4 (3)</td>
<td>—</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>—</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>30 (23)</td>
<td>51 (35)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Any of the above</td>
<td>59 (45)</td>
<td>90 (62)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cases in Control Group</th>
<th>Cases in Vaccine Group</th>
<th>Vaccine Efficacy (VE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>21</td>
<td>7</td>
<td>67</td>
<td>19-88</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>32</td>
<td>14</td>
<td>56</td>
<td>16-78</td>
</tr>
<tr>
<td>Any</td>
<td>39</td>
<td>17</td>
<td>56</td>
<td>21-77</td>
</tr>
</tbody>
</table>

In the cotrimoxazole group, 29 and 13 are HIV+ (VE 55%).

Children <2 Years of Age

Incidence (cases per 100,000)

Penicillin-susceptible disease

Penicillin-non-susceptible disease

Vaccine introduced

>2 Years of Age

Antibiotic Resistance Remains Common in URT Isolates in the Vaccine Era

- Rates of resistance in NP carriage studies in Boston show evidence of replacement, but also no reduction in antimicrobial resistance associated mainly with serotypes 19A and 19F¹
- In Alaska, NP surveillance reveals reduced COT resistance associated with little selective pressure, but no drop in pen resistance associated with increased resistance in 19F²
- In Kentucky, although pneumococci decreased in MEF, antibiotic resistance did not³

Day Care in Portugal

Serotypes Not Represented in PCV7 (N = 4112)

Future Prospects

- Strategies to reduce antimicrobial use in order to decrease resistance are complicated by multiple resistance.

- Pneumococcal conjugate vaccines have been shown to interrupt the transmission of multiply-resistant strains that belong to vaccine serotypes, but resistance is emerging in nonvaccine types.